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Abstract 

The reporting of large number of duplicate bug reports has generated the need 

for appropriate duplicate bug report detection techniques. Researchers have 

developed duplicate bug report detection techniques using different approaches 

such as Information Retrieval, Machine Learning etc. However, due to rapid 

development of duplicate detection techniques, it has become difficult to 

compare and select an appropriate duplicate bug report detection technique. 

Besides, the usage of different Information Retrieval and Machine Learning 

techniques have made it more difficult to understand the successes, failures and 

future opportunities of the proposed techniques. In order to draw a clear picture 

of the existing techniques developed from the inception to the present, this paper 

presents a systematic analysis of the duplicate bug report detection techniques. 

The analysis has been prepared from existing techniques published in ranked 

conference and journals. The paper has presented insights on the type of input 

data set used for developing and testing the techniques, the feature selection and 

pre-processing strategies of bug reports and the type of algorithms and 

evaluation metrics used for developing the techniques. The paper lastly 

elaborates the findings established during the discussion of the insights, and 

presents a road map for future research on the uncovered areas. 

Keywords: Duplicate Bug Report Detection, Feature Selection, Machine 

Learning, Information Retrieval, Neural Network, Deep Learning. 
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1. Introduction 

Due to the changing nature of software systems, a bug in the source code of 

software is common to all software systems. These bugs are submitted in report 

formats for resolution. A reported bug report logically represents the information 

of a source code bug. However, in open source systems, large number of 

developers work from different locations in a single project. Therefore, it is very 

common that a similar bug report can be submitted by a number of developers. 

Besides, in open source systems, the users also have the privilege to report bugs. 

As a result, same bug can be reported repetitively which creates duplicate bug 

reports. For example 30% of Firefox’s reported bug reports are duplicate of already 

reported bugs (Ebrahimi et al., 2019). Duplicate bug reports add cost to software 

development and maintenance process in terms of time and effort (Rahman et al., 

2020). The identification and resolution of duplicate bugs consume the efforts of 

bug triggers and software developers which can be spent on unique bug reports. 

To reduce the cost, a number of techniques for identifying duplicate bug reports 

have been proposed in literature. Anvik et al. (2005) first characterized the problem 

of duplicate bug reports in open-source systems. The paper analyzed the bug 

reports from two open-source projects such as Eclipse and Mozilla Firefox. The 

analysis characterizes the bug reports from four different perspectives such as - the 

type of bug reports, the rate of bug reporting, the duration of bug resolution and 

the role of bug resolver.  

In order to conduct the systematic analysis, the literature is searched in a step by 

step approach. At first, a google scholar search has been conducted using the query 

string “Duplicate Bug Report Detection”. However, the google search technique 

returns all matching results that have the query string terms in any segment of the 

searched articles. If the google scholar search is performed by setting the option 

named “sort by relevance” as checked, then the false positive results occur at the 

end of the returned search list. Therefore, the search is performed by setting the 

option “sort by relevance” checked for each of the years from 2017 to 2021. For 

each year, the top most 100 articles have been identified. Therefore, a total of 500 

articles have been collected for processing in the next phase. During the second 

phase, the articles which are non-English, database files, books or letter type 

articles are excluded. Later, the title and abstract of the full text articles are checked 

for relevancy with the searched query string. Out of the 500 identified articles from 

year 2017 to 2021, total 74 articles are found to propose different techniques of 

duplicate bug report identification. In the last phase, the ranking of the conferences 

and journals where the 74 articles are published is checked using Computing 

Research and Education (CORE) site (Education, 2021). Out of the 74 articles, 23 
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articles are published in ranked conferences and journals. Therefore, these total 23 

articles are selected for the final systematic analysis. 

For analyzing the existing techniques and identifying the future scope in duplicate 

bug detection, this paper tends to answer three Research Questions (RQs). 

• RQ1 demonstrates the input data types used for duplicate bug report 

detection. 

• RQ2 identifies the bug report properties which are used by existing 

duplicate bug detection approaches. 

• RQ3 discusses about the algorithms which are being used for duplicate 

bug report detection. 

The rest of the paper is organized into following sections. Section 2 shows the 

general model of a duplicate bug report detection technique. Section 3 discusses 

the existing duplicate detection techniques. Section 4 answers RQ1 by enlisting the 

input data sets used for developing and assessing the existing techniques. The 

selection and pre-processing strategies of bug report features is discussed in 

Section 5. This section also answers RQ2 by identifying the most used bug report 

features. Section 6 answers RQ3 by describing the machine learning, information 

retrieval and deep learning approaches used for developing the existing 

approaches. Finally, section 7 concludes the paper by summarizing the findings 

and pointing the future research scopes in the field of duplicate bug detection. 

 

2. General Model of Duplicate Bug Report Detection Techniques 

The overall duplicate bug detection techniques consist of some common sequential 

steps. Figure 1 represents the general model of duplicate bug report detection 

technique which consists of Feature Selection, Bug Report Pre-processing and 

Learning Algorithm or Model. The bug reporting systems such as Bugzilla, Jira 

etc. enable the developers and users to report bugs using customer friendly 

software interface. The tracking systems collect and maintain a variety of 

information about the reported bugs as bug properties (Serrano & Ciordia, 2005). 

These properties include - bug report id, assignee information, reporting date, 

component details, product details, bug severity, bug tossing and management 

history, bug status, bug severity, developer’s comments during bug resolution, bug 

summary, bug description and many more. Some secondary properties such as bug 

screen shots, bug stack trace, link to source code commit messages etc. are also 

included sometimes. Each of the property represent different information regarding 

the bug. The Feature Selection phase selects appropriate properties from the bug 

report for learning the algorithm or model in the latter phases. 
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The properties of bug report are written in different formats such as natural 

language, categorical format etc. Natural language text may contain redundant 

information which do not represent the actual characteristics of the reported bug. 

Therefore, the Pre-processing phase processes the content value of bug report 

properties. Tokenization, stemming, stop word removal are some of the known text 

pre-processing techniques used by existing techniques. Each property of the bug 

report represent different information of the reported bug. Finally, in the Learning 

Algorithm or Model a model is prepared using either machine learning, deep 

learning or information retrieval based techniques. The features are fed into these 

models identifying the duplicates. For machine or deep learning based approaches, 

a bug report is generally classified as duplicate or not. On the other hand, 

information retrieval based techniques return a ranked list of bug reports suggested 

to be duplicates. 
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Figure 1: Components of General Duplicate Bug Report Detection Techniques 
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Jalbert and Weimer (2008) devised a duplicate bug report classification technique 

that classifies the bug report as duplicate as the report arrives in the system. The 

technique comprises of three steps which are surface (severity, OS version and 

number of source patch or screenshot attachment) and textual (title and 

description) feature extraction, text similarity measurement and graph clustering. 

The similarity value of textual features are calculated using vector dot product. A 

graph is then induced where the nodes represent bug reports and edges represent 

their calculated similarity value. Next, the existing reports are clustered using 

graph clustering algorithm. On arrival of a new report, the textual similarity is 

checked and the report is classified in the clusters for duplicate identification. The 

experiment includes a representation of a real-time bug reporting environment 

using 29,000 bug reports from Mozilla project. The proposed approach achieved 

around 52% recall rate in identifying duplicates, however the rate seems poor in 

comparison with other existing techniques. 

Johannes and Mira (2013) proposed an approach that applies stack traces to 

machine learning algorithms for detecting bug report duplicates. However, the 

technique may fail if source code attachments are missing in bug reports. Neysiani 

and Babamir (2019a) also presented a duplicate detection approach which 

combines both IR and ML based algorithms. The paper shows that when combined 

the IR based technique shows similar performance as ML based techniques. Hence, 

ML based models provide better performance in duplicate detection than the IR 

based models alone. 

Tian et al. (2016) developed a unified model for bug report assignee 

recommendation by combining developer’s activity information and bug 

localizing information. The proposed model extracts the title and summary text 

from the bug reports, and the comments and identifiers from the source code files. 

These extracted text then go through various text processing steps such as - 

tokenization, stemming and stop word removal. The model also creates a list of 

developer profiles which represent the list of bug reports and source code files 

worked on by the corresponding developers. Next, to train the assignee 

recommendation model sixteen (16) different features are proposed and extracted 

using the processed texts of bug reports and source code files. Among the sixteen 

features, the first five (5) features indicate the similarity between the new bug 

report and the source code files added, edited or deleted by a developer. In order 

to calculate the similarity value, cosine similarity and BM25 technique is applied. 

The features six (6) to ten (10) extract the similarity between the new and the 
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previously fixed bug reports by a developer. Feature eleven (11) and twelve (12) 

represents the frequency and recency of a developer’s bug resolution. Features 13 

to 16 enables the model to incorporate the location information of bug reports and 

developer commits. The similarity between the new bug report’s buggy code and 

developer’s previously fixed source code is measured using the cosine similarity 

and BM25 technique, for forming features thirteen (13) and fourteen (14). Lastly, 

feature fifteen (15) and sixteen (16) checks if a developer has ever touched the 

source code files corresponding to the new bug report. When a new bug report 

arrives, the model recommends a ranked developer’s list by calculating a weighted 

sum of k features selected from the 16 features (Lee & Lin, 2014). More features 

can be added, as the work of Neysiani et al. (2020) shows that consideration of 

product feature plays vital role. Besides, the k selected features for the three data 

sets show that the features from activity information play better role than location 

based ones. 

Ebrahimi et al. (2019) devised a duplicate bug report detection technique which 

leverages the stack traces of bug reports. The bug report properties such as product, 

component and status is examined to identify the master bug report and its 

corresponding duplicates. Then, the identified bug reports are used to create 

Duplicate bug report Groups (DG) where each DG contains the stack trace of the 

master bug and its corresponding duplicates. In this case the bug reports having 

minimum four stack traces are taken into consideration. Next, the bug report of 

each DG is used to train a Hidden Markov Model (HMM). The stack traces of bug 

reports are treated as hidden state sequences and the DG groups are treated as 

observations in the HMM training. Baum-Welch algorithm is used to estimate the 

three parameters of HMM. For each DG group 60%, 10% and 20% bug reports are 

used for training, validation and testing of the HMM model respectively. When a 

new bug report arrives, the stack trace of the report is collected and matched with 

each of the trained HMM to identify the probability of matching score. A highest 

probability score represents the highest probability of being duplicate of the 

existing DG groups. The technique will fail for bug reports which does not contain 

any stack traces. 

Neysiani and Babamir (2019b) presented a Longest Common Sequence (LCS) 

based new feature for measuring similarity between two bug reports. From each 

bug report identical, categorical, textual, and contextual features are elicited and 

converted into a sequence of features. The textual and contextual features are 

measured using BM25F and cosine similarity respectively. Next, the longest 

common sequence is calculated between the bug reports for identifying duplicates. 
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The proposed technique achieves a high accuracy, precision and recall rate of 

96.09%, 98.43% and 97.27% respectively. The paper added a new feature with the 

existing ones, however, finding the appropriate feature for calculating similarity 

between bug reports is still an unanswered research question. 

Neysiani and Babamir (2019c) proposed the individual Manhattan distance 

comparison method as an alternative to cosine space similarity for each subject in 

contextual features (Neysiani & Babamir, 2019c). The study is an extension to 

previous papers with using the different similarity metric. The proposed model was 

trained by decision tree and linear regression classifiers and achieved accuracy 

96.65% and 81% respectively and recall rate 95.89% and 73.18% respectively. 

Wang et al. devised an duplicate detection approach which considers the natural 

language info and source code execution info. The approach first calculates the 

Natural Language based Similarities (NL-S) between the new and existing bug 

reports. Next, the Execution information based Similarities (E-S) are measured 

between the new and remaining bug reports. Finally, reports are selected using 

comparisons based on two heuristics, where the first is to merge the E-S and the 

NL-S into one joint comparison and the second is to try to identify whether the 

natural language or the implementation info is the main issue in perceiving the 

duplicate reports. The technique used TF-IDF similarity measure for checking 

equality which tends to achieve poor accuracy in comparison with machine 

learning approaches. 

Poddar et al. (2019) proposed a neural architecture to identify duplicate reports by 

considering the latent issues of the reports. The paper applied IR based topic 

modeling for identifying the bug reports. However, the paper mentioned that bug 

report written by general users and experienced developer differ from each other 

in terms of technical word selection. Therefore, considering the bug reports 

separately based on their submitter can also affect the performance of duplicate 

detection. Soleimani and Morteza (2020) presented an approach to estimate the 

impact of typo on Duplicate Bug Report Detection (DBRD). The evaluation of the 

approach on the Android dataset shows that the typos improvement can increase 

the accuracy and recall of DBRD at most 1% in average, which is trivial. The 

proposed technique also used the textual, categorical, contextual and temporal 

features. The results indicated that removal of typos cannot improve the 

performance of existing techniques. 

Jianjun et. al (2020) proposed a duplicate bug detection technique using Dual- 

Channel Convolutional neural network. First, the technique extracts structured 
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(such as component, product, priority) and unstructured (such as summary, 

description) information from the bug report and converts them into a text 

document. Next, the text documents go through pre-processing steps which include 

tokenization, stemming, stop word removal and case conversion. After pre- 

processing, the words of the bug reports are converted into a corpus using 

word2vec model. As a result, each word is represented using a single dimension 

vector and each bug report is represented using a two dimension matrix containing 

the vectors. The duplicate bug report pairs are then represented by combining the 

single-channel bug report matrices into dual-channel bug report pairs. Next, the 

training phase fed the dual-channel bug report matrices into the Convolutional 

Neural Network (CNN) for training the model. The similarity score is compared 

with a threshold value to classify the bug report pairs as duplicates. The proposed 

technique considered only 300 words from each bug reports which may ignore 

important information of the remaining part of the bug reports. Besides the 

technique ignored the source code attachment or files while consideration of the 

bug report properties. 

Neysiani et al. (2020) proposed an efficient feature extraction model for duplicate 

bug report detection. The technique starts with pre-processing the existing bug 

reports by null value detection, homologize bug report formats, tokenization of 

keywords etc. After pre-processing, the duplicate and non-duplicate bug reports 

are listed and inputted into the feature extraction phase. For extracting efficient 

features from bug reports, this phase considers four types of features which are 

textual, temporal, categorical and contextual. The textual feature are extracted 

using TFIDF, BM25F, Longest Common Sub-sequence (LCS) and aggregated 

functions such as maximum, minimum and average values of conventional TF and 

IDF values in uni-gram and bi-gram forms. The temporal features are extracted 

using the interval between bug report ids and opening dates. The categorical 

features are collected by comparing the similarity of product, component, priority, 

type and version information of bug reports. Contextual features are elicited by 

calculating the cosine similarity between contents of bug reports. Next, the 

efficiency of each extracted feature is checked using a Efficiency Detector Value 

(EDV). The EDV value is calculated using a new heuristic approach that takes the 

weighted average of the normalized information gain ratio, Gini index, chi-square, 

Principal Component Analysis and correlation of each feature. Using the extracted 

features a duplicate bug report detector model is generated. Although the model 

takes only 5 minutes to predict if a bug report is duplicate, the model compares 

each new bug with every existing bug report which requires huge computation. 
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The paper also mentioned that the contextual features alone cannot predict the 

duplicate bug report effectively. 

Alkhazi et al. (2020) proposed an extended version of Tian et. al by adding four 

more features which can be used in a ranking model. The proposed technique adds 

four features for calculating the similarity between the new bug report and 

previously committed messages by developers. The features are collected from bug 

report commit messages and source code API documentation. Finally, total twenty 

two (22) features were extracted to identify the appropriate feature combination 

for training the bug report assignment model. Naive aggregation, Ordinal 

regression and Learning-to-rank are used to combine the extracted features. 

Sometimes only the experienced developers have permission to commit, but the 

resolution may be done by other developers, therefore detail of all commit 

messages need to be considered. 

Jiang et al. (2020) developed a security bug report detection model known as 

LTRWES, by combining learning to rank with word embedding. LTRWES detects 

security related bug reports using four steps which are - Learning to Rank, 

Selecting, Training and Predicting. The Learning to Rank phase starts with ranking 

the NSBRs based on their similarity with the SBRs for correctly labeling all the 

bug reports. In this regard, the summary and description fields of each bug report 

is extracted and pre-processed. The pre-processing step includes text tokenization, 

lowercasing letters, stop word removal and stemming. Next, the similarity score 

between a pair of NSBR and SBR is calculated using BM25Fext technique. The 

similarity score is represented using a matrix where the rows indicate NSBRs and 

columns indicate SBRs. The average of the similarity scores in a row represents 

the actual similarity score of a NSBR with respect to the other SBRs. The NSBRs 

are then ranked based on their average similarity scores where the ranking shows 

the lower similarity scored bug reports at the top. The selection phase identifies 

the appropriate NSBRs by applying either of Multiple Selector (ms-selector) or 

Roulette Wheel Selection (rs-selector) algorithm on the previously ranked NSBRs. 

The ms-selector algorithm selects the top K lower scored bug reports from the 

ranked NSBRs. On the other hand, re-selector algorithm also selects K bug reports 

based on the probability of dissimilarity between the NSBRs and SBRs. The value 

of K is specified by multiplying the ratio value with the number of SBRs. Next, 

the top K selected NSBRs and all the SBRs are feed to the prediction model for 

training. The training phase first creates a vector representation of each bug report 

using the Continuous Bag of Words (CBOW) model. Naive Bayes, Multilayer 

Perceptron, Random Forest, K- Nearest Neighbor (KNN), Logistic Regression, 
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and Support Vector Machine (SVM) techniques are used to train a model using the 

bug report vectors. Finally, in the prediction phase, when a new bug report comes, 

the bug report is also pre-processed and converted into a vector representation 

using the CBOW model. The model takes the vector representation as input and 

predicts the bug report as NSBR or SBR. The model is tested both on within project 

and cross project. But while testing cross projects, only one project was taken as 

cross project. For multiple cross projects how the technique performs can be 

analyzed further. 

Akilan et al. (2020) proposed a computational efficient double tier duplicate bug 

detection system. The overall technique is divided into two phases – clustering and 

classification. For each bug report, structured (component, product, priority) and 

unstructured (summary, description) information’s are extracted. The clustering 

phase prepossesses the bug reports and removes the redundant information. Next, 

the bug reports are clustered using Latent Dirchilect Allocation (LDA) topic 

modeling. When a new bug report comes, the Top N clusters which have similarity 

with the bug report are extracted. The selection of Top N clusters reduces the 

necessity of matching a bug report to all existing reports. As a result computational 

efficiency is achieved. In the classification phase, the bug reports are represented 

in vector formats using Word2Vec, GloVe and FastText. The similarity between 

these vectors are calculated using cosine similarity and Euclidean similarity. The 

proposed technique achieved 67% recall rate with 3 times less computation. 

However, the recall rate of topic modeling based techniques seems lower than 

exiting machine and deep learning techniques. 

Kumar et al. (2020) developed a classification technique for identifying duplicate 

bugs. The technique first extracts the categorical (product, component and version) 

and textual (headline and description) features and preprocesses those. In feature 

generation phase, three types of features have been calculated such as text 

statistical, semantic and contextual feature. These features are fed to train the 

machine learning classification which uses the XGBoost algorithm. When new bug 

report arrives three servers known as App server, Model server and Embedding 

server works together to get the new report as input and classify the report as 

duplicate. The developed model was tested on Mozilla and Cisco project which 

achieved 90%, 98%, 94% and 87% precision, recall, F1-score and accuracy 

respectively. Although the paper used textual, categorical and customized 

extracted features, it did not mention which feature have highest impact in 

identifying appropriate duplicates. 
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Kukkar et al. (2020) proposed an automatic approach for detecting and classifying 

duplicate reports based on deep learning. The proposed approach considered the 

textual features such as title, summery and description and identical features such 

as bug id. Deep learning-based model mainly CNN is applied for eliciting the 

word’s semantic and morphological relationship for the textual similarity 

assessment between bug reports. The proposed model achieved higher accuracy 

rate in between 85% - 99% and recall rate is 79%-94%. The proposed technique 

did not consider the contextual and temporal features which could impact the 

performance of CNN feature extraction. 

By combining the attention based and context based feature, a duplicate bug report 

detection has been proposed by Rocha and Carvalho (2021). The overall technique 

is divided into three phases – training, retrieval and classification. In training 

phase, the bug report textual keywords are weighted for topic extraction and one 

hot encoding is created for contextual features. Next, a quotient loss function is 

devised for calculating the similarity between bug report embedding. The 

technique has been applied on Eclipse, NetBeans and Mozilla database which 

achieved accuracy of 84% accuracy. The application of the proposed loss function 

on closed or industrial project can be another future research scope. 

Mahfoodh and Hammad (2022) proposed a duplicate bug report detection 

technique for predicting the risk factor of software components. The techniques 

uses the title / summary and description of bug report and extracts the word tokens. 

Next, the word tokens are converted into array which are fed into neural network. 

The similarity is measured using two approaches. The first similarity approach 

iterate on the words of one bug report to find its similar word with another bug 

report using Euclidean distance. On the other hand, the second similarity measure 

iterate on the words however within a given range. The technique achieved an 

average precision of 99.89%. The proposed techniques considers a fixed given 

range value for checking words. The increasing number of range value may affect 

the computational performance of the technique. 

Few existing papers have also presented survey of the above mentioned duplicate 

bug report detection techniques (Neysiani et al., 2019a). Most of the papers only 

analyzed the different algorithms and evaluation metrics used for developing the 

duplicate detection techniques. However, none of the existing papers analyzed the 

effects of datasets, pre-processing techniques and bug report features while 

developing the detection techniques. 
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The difference in considering different datasets, pre-processing techniques, bug 

report features, algorithms and evaluation metrics raises the issue of generality of 

existing duplicate report detection approaches. Therefore, the detailed analysis 

regarding selection of input datasets, pre-processing mechanisms, features, 

algorithms and evaluation metrics may uncover the areas of improvement for 

future research. 

4. Input Data Set 

Open source systems are developed with contribution of developers from various 

location of the earth. Besides, now-a-days most of the software systems collect 

feedback from users to provide continuous support and maintenance. As a result, 

software bugs are reported by developers, testers and also users all over the world. 

To track and maintain these huge load of information, the open source software 

systems use bug tracking repositories such as – Jira, Bugzilla etc. Existing papers 

have used bug data set from the open source bug tracking systems (Ebrahimi et al., 

2019; He et al., 2020; Neysiani et al., 2020; Tian et al., 2016). Some techniques 

have also incorporated software source codes along with the bug reports for better 

identification of duplicate bugs. 

RQ1: What type of data are being used for duplicate bug report detection? 

The most common data used for bug assignment, localization, classification and 

duplicate identification is bug repository. A number of open source bug 

repositories are available now-a-days. The bug repositories provide a number of 

functionalities to easily search and view the bug reports. Besides, the bug tracking 

systems have also provided different end-user and server-side utilities as third 

party extensions for easy and public access to submitted bug reports. Therefore, 

almost all of the existing techniques have used the open source bug tracking 

systems to collect input data. Many open source software projects uses these bug 

tracking systems for maintaining their bug repositories. 

Figure 2 have listed the open source projects that have been used by existing 

duplicate bug detection techniques. The figure depicts that open source systems 

which maintain the bug repository consistently are used by most of the techniques. 

For example Eclipse is used by most of the existing techniques as a data set. Eclipse 

bug repository is maintained using Bugzilla. Bug reports can be searched and 

extracted in different formats. For example - JDT, SWT, ANT, UI are some of the 

products of Eclipse. Tian et al. (2016) and Alkhazi et al. (2022) have applied their 

proposed techniques on Eclipse JDT, SWT and UI product specific bug reports for 

evaluation. 
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Figure 2: The usage of bug dataset by existing techniques 

 
Besides Eclipse dataset, the Mozilla, Open Office, Android, NetBeans and 

GNOME are one of the most used dataset by most of the existing techniques 

(Ebrahimi et al., 2019), (He et al., 2020), (Sabor et al., 2017). Bugzilla has provided 

different plugins and websites for managing bug data of projects such as Bugzilla 

GNOME, Bugzilla Mozilla etc. (Bugzilla, 2021). Yuan et al. has collected security 

specific bug reports from Chromium, Derby, Camel, Wicket and Ambari dataset. 

In order to download the reports an open source web crawler known as Scarpy has 

been used (Zou et al., 2018). The tool is implemented in python for specifically 

crawling security specific bug reports using multi-type feature analysis. 

For learning a model substantial amount of fixed bug reports are required. Yuan et 

al. collected minimum of 1000 bug reports from Ambari project for developing a 

security bug detection model (Jiang et al., 2020). The reason of selecting a lower 

number of bug reports is the availability of security bug reports. On the other 

hands, most of the techniques have used more than 10,000 bug reports as data set. 

Xiao et al. collected 2,73,710 bug reports from Eclipse bug repository for 

developing a heterogeneous information network to detect duplicate bugs (Xiao et 

al., 2020). The bug tracking systems enable the easy submission and maintenance 

of large scale bug reports. Therefore, it is evident that most of the techniques have 

been developed and tested on data set which are available in open source bug 

tracking systems and which already have large scale bug data set. 

For ensuring the effectiveness, a duplicate bug report detection technique needs to 

be tested on both open source and closed source projects. The process of bug 

detection, bug reporting, developer involvement for bug resolution etc. differs 

between open source and closed source projects. Only a few techniques have 



<bug> 

<id>519169</id> 

<creation_ts>2017-07-04 10:54:44 -0400</creation_ts> 

<summary>Vulnerability found in Eclipse</summary> 

<product>andmore</product> 

<component>Core</component> 

<version>0.5.0</version> 

<status>ASSIGNED</status> 

<priority>P1</priority> 

<severity>critical</severity> 

<long_desc><commentid>2849292</commentid> 

<who name="Alon Boxiner">alonbo</who> 

<thetext>Steps to reproduce: 1. Open a new Android 

project.</thetext> 

</long_desc> 

</bug> 

14 | Analysis of Duplicate Bug Report Detection Techniques 

applied closed source projects for development and evaluation (Cooper et al., 

2021a, 2021b). 

Bug reports in open source systems are reported using bug tracking systems. Each 

bug tracking system provides a predefined form structure for reporting bug reports. 

Bugs are reported using these forms and can be downloaded using plugins 

provided by the bug tracking systems (Bugzilla, 2021). By using the plugins the 

bug reports can be downloaded in XML, CSV and plain text format. Figure 3 

shows the sample Eclipse bug report having id 519169 in XML format. 
 

 

Figure 3: Sample eclipse bug report in XML format 

Few approaches have used video-based bug reports as input (Cooper et al., 2021a, 

2021b). These approaches leveraged screen-recording features of Android and iOS 

device for capturing the video of bugs. The videos showing error are reported as 

bugs for further resolution. The videos are converted into a consecutive series of 

images. Next, the text of the images are extracted and matched with incoming bug 

reports for duplicate detection. 

The source code repository are collected from version control systems such as 

GitHub, Bit bucket etc. Each version control system provides command line 

functionalities to download the repository. Besides, the associated commit 

messages can also be extracted using the terminal commands. The comments of 

commit messages can be extracted in plain text, XML etc. formats. The change 

history of source code files can also be extracted from commit details. 
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The above discussion answers the RQ1 by identifying that most of the existing 

techniques generally use fixed bug reports as input data set. Besides, open source 

systems which have maintained rich bug report repository (such as Eclipse, 

Mozilla, NetBeans etc.) for long time are also preferred by most of the techniques. 

Along with the bug reports, the source code, commit files, version history and 

comments are also used as input data. Now-a-days the video and screenshot based 

bug reports are also being used. Thus the study of video or screenshot based 

duplicate bug detection can be explored by researchers. Although most of the 

technique has used open source bug repository, only a few approaches have tested 

the technique on closed source projects. Therefore, future research scope lies in 

finding appropriate duplicate detection technique for closed source and cross 

projects. 

5. Feature Selection and Pre-processing 

After collecting the input bug reports, appropriate bug report property or feature 

needs to be selected for learning the duplicate detection technique. The more 

appropriate the property is selected, the more relevant duplicate can be identified. 

 

RQ2: Which bug report properties are used for duplicate bug report detection? 

The bug report properties can be also referred as bug report features where each 

feature indicates a new aspect of the reported bug. Based on the content type and 

previous usage, the features are divided into four major categories which are - 

Textual, Categorical, Contextual and Temporal. 

5.1 Textual Feature 

The textual feature refers to the bug report properties which are written in natural 

language format. The title, summary, description and comments are the main 

textual properties of a bug report as shown in Table 1. While reporting a bug, the 

developers generally add a short title/summary of the bug report which is written 

in natural language format. Besides the title, a detailed description of the bug is 

also added. The description often contains source code stack traces. As a result, 

the description of bug report may be of any length. After the reporting of the bug, 

developers interact with each other by posting comments during the bug resolution. 

Hence, the comment property also contains text in natural language format. 

As the textual fields are written in natural language, so these fields indicate 

appropriate developer’s or user’s perspective about a reported bug. Table 1 shows 

that 20 out of the 23 papers have used description field of the bug report as feature 

for duplicate bug detection. Next, the title or summary is the most used bug report 
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feature. The table also shows that out of the four major categories, textual features 

are the most used bug report features. 

Table 1: Features of Bug Report 
 

Feature Type Feature Name No of Times Used 

Textual Description 20 

Title / Summary 18 

Comment 3 

Categorical Component 12 

Product 11 

Priority 10 

Operating System 7 

Version 5 

Severity 4 

Hardware 1 

Status 1 

Contextual Topic of report extracted based 

on textual features 

7 

Temporal Open / Close Date 4 

Identical Bug Id 5 

Structural / Attachment Source code / file attachment 4 

 

5.2 Categorical Feature 

The categorical features represent the bug report properties which value is selected 

from a list of predefined values. It includes the component, product, priority, 

operating system, version, severity and status of the bug report. The similarity 

between two duplicate reports are checked by calculating the equality of the 

features. Table 1 shows that categorical features are the second highest used 

features by the existing techniques. The Product and Component are the most used 

features of categorical type. 

5.3 Contextual Feature 

Unlike the textual and categorical features, the contextual features tend to identify 

inherent topic of the bug report using topic modeling techniques (Rocha & 

Carvalho, 2021). These features are calculated by measuring the similarity 

between the content of the bug report and a predefined list of words corresponding 

to specific topics (such as security, performance, enhancement etc). The contextual 

similarity of bug reports are measured using different techniques such as Cosine 

similarity, Manhattan distance, LDA etc. 
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5.4 Temporal Feature 

The temporal features tend to check the recency between the bug reports in terms 

of reporting or closing time. These features are calculated by taking the subtraction 

value of same fields from two different bug reports. The features are less used in 

comparison of the other features as shown in Table 1. However this feature can be 

helpful in filtering the recent bug reports. As a result, the search space of duplicate 

report checking can be reduced. 

Apart from the above mentioned features, Identical, Structural and Derived 

features are also used in existing techniques (Mahfoodh & Hammad, 2022). The 

identical features check the distance between the unique id of bug reports to 

understand their reporting sequence. Source code patch or files are sometimes 

attached with the bug report (Wang et al., 2008). These file attachments are 

considered as structural features while duplicate detection. Derived features are 

calculated by applying the TF-IDF, BM25F and date interval calculation 

techniques on categorical and textual features of the bug report. 

After extraction of features, ranking or combining features has also been done by 

few proposed techniques (Alkhazi et al., 2020, Neysiani et al., 2020). For ranking 

the features Naive aggregation, Ordinal regression and Learning-to-rank have been 

used in literature. Few existing works have assigned specific value to features for 

ranking. The values are assigned based on weighted average of information gain 

ratio, Gini index, chi-square, PCA of the features. The more appropriate feature is 

selected, the more appropriate duplicate reports can be identified. Therefore, 

techniques for ranking and identifying effective features can be explored further. 

 

Since the bug report fields are stored in different formats as discussed above, 

therefore before checking similarity the data needs to be normalized in general 

format. Figure 4 shows the popular pre-processing techniques which have been 

used by researchers. It can be seen that text tokenization and stop word removal 

have been used 78.26% times in the 23 studied papers. Stemming is the third most 

used preprocessing technique being used in 43.48% cases. Jalbert et al. have 

applied MontyLingua tool, ReqSmile tool and Porter Stemming algorithm for 

tokenization, stop word removal and stemming respectively (Jalbert & Weimer, 

2008). Lower case conversion, n gram word conversion, lemmatization are also 

used while pre-processing the text fields of the bug report. For stack trace or source 

code files, programming specific word removal, file path replacement mechanism 

are applied (Kumar et al., 2020). 



Percentage(%) of Pre-processing Technigues Use 

Bag of Words (BoW) 

Source code word handling 

Lemmatization 

n gram conversion 

Case conversion 

Stemming 

Stop word removal 

Tokenization 

8.7 

13.04 

13.04 

17.39 

21.74 

43.48 

78.26 

78.26 
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Figure 4: Sample eclipse bug report in XML format 

Based on the above discussion, the answer to research question RQ2 depicts that 

textual and categorical properties are the most used properties of a bug report. On 

the other hand, stop word removal, tokenization and stemming are the popular text 

cleansing techniques. However, there is no clear discussion on among the four 

features, which are the most dominant one in identifying duplicates. Therefore, the 

effect of using individual and combined features in identifying duplicate bug 

reports can be studied in future. 

6. Learning Algorithms 

Once appropriate features are selected and pre-processed, the features are fed into 

different algorithms to develop a model that can detect duplicate bug reports. 

RQ3: What type of algorithms are being used for duplicate bug report detection? 

The existing techniques have used Machine Learning (ML) (Neysiani & Babamir, 

2019c), Information Retrival (IR) (Sabor et al., 2017) and Deep Learning (DL) 

(Poddar et al., 2019) based techniques for identifying duplicate reports. 

Information retrieval based techniques generate a ranked list of duplicates 

corresponding to an incoming report (Sabor et al., 2017; Johannes & Mira, 2013) 

.On the other hand, machine learning and deep learning based techniques classify 

a incoming bug report as a duplicate (Akilan et al., 2020; Kukkar et al., 2020; He 

et al., 2020). Some of the existing work have also combined these techniques in 

different phases of the duplicate detection algorithm (Neysiani & Babamir, 2020). 

For evaluation of the existing techniques, researchers have used different metrics 

such as Accuracy, Recall, Precision, F1- score etc. Among these, accuracy and 
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recall has been used by most of the techniques (Neysiani et al., 2020; He et al., 

2020; Xiao et al., 2020; Neysiani & Babamir, 2020, 2019b). Accuracy refers how 

many correct classification have been predicted by the model as shown in Equation 

1. On the other hand, recall refers how many correct duplicates have been placed 

in the ranking from the actual duplicates as shown in Equation 2. 

 

= (1) 

 
= (2) 

 

 

Figure 5: Analysis of accuracy in different Machine Learning (ML) algorithms 
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Figure 5 and 6 shows the accuracy of duplicate bug detection technique using 

different Machine Leaning and Deep Leaning algorithms respectively. The reason 

behind selecting these algorithms is the 23 reviewed papers have used these 

algorithms in combination or individual. Among the different ML algorithms the 

accuracy of Decision Tree (DT), KNN and rankSVM is above 97% which is 

prominent. On the other hand, the deep learning algorithms such as Recurrent 

Neural Network (RNN) and Convolutional Neural Network have accuracy above 

98% which shows DL algorithms have better accuracy than ML algorithms. 

However, both of the algorithms have reached above 96% accuracy while 

detecting duplicate bug reports which indicate that there is small scope of future 

improvement in terms of accuracy. However, while achieving the accuracy the 

performance in terms of time, computation can be considered as future research 

scope. Besides the results of Figure 5 and 6 have been achieved using open source 

bug repositories where huge volume of data is available. The accuracy of these 

algorithms in terms of closed source bug repositories need further attention. 

 

Table 2: Analysis of Recall in Information Retrieval, Machine Learning and 

Deep Learning Techniques 
 

Information Retrieval Techniques 

LDA TF-IDF BM25F LCS 

67 84 93.04 97.27 

Machine Learning Techniques 

LR KNN XGBoost DT 

92.95 97.51 98 99.94 

Deep Learning Techniques 

NN CNN Dual Channel CNN RNN 

80 91.48 96.7 97.07 

 

Table 2 shows the recall value of different Information Retrieval, Machine 

Learning and Deep Learning algorithms. Among the three category, IR based 

algorithms have lowest recall of 67% and 84% using Latent Dirichlet Allocation 

(LDA) and TF-IDF technique respectively. Jalber et al. also mentioned in the paper 

that TF-IDF achieved recall rate of 52% which is poor (Jalbert & Weimer, 2008). 

On the other hand, Machine Learning and Deep Learning techniques have higher 

recall in terms of IR based techniques. Decision Tree has accuracy of 99.94% in 

detecting duplicate bug reports (Soleimani & Morteza, 2020). The high value of 

recall for ML and DL techniques represent the limited scope of improvement in 

this metric. The future scope lies in evaluating the performance of these algorithms 

in terms of time, computation, memory usage etc. to reach this recall value. 
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The above discussion answers the research question RQ3 by identifying the fact 

that ML and DL algorithms achieve higher accuracy and recall than the IR based 

techniques. The higher value of these metrics show little scope of improvement in 

these metrics. However, in future the performance of combined application of 

these algorithm can be analyzed. Another future scope for research can be the 

implementation of duplicate detection technique as plugin for the software 

development IDEs. As a result, before reporting a bug, the developers can check 

for its duplicate bugs. 

 

7. Conclusion 

With the increasing of duplicate bug report submission, the need for appropriate 

duplicate bug report detection has become important. A general duplicate detection 

technique consists of three steps - Feature Selection, Bug Report Pre-processing 

and Learning Algorithm or Model. Based on this, a number of duplicate detection 

techniques have already been proposed by researchers. Therefore, this paper 

discusses the present literature work of duplicate bug report detection. In order to 

do so the papers devises three research questions which tend to analyze the input 

data set, the feature selection and prepossessing, and the evaluation of different 

learning algorithms respectively. With each research question, the future road map 

for research in duplicate detection has also been enlisted. 
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