
Journal of FST, Volume 01, Issue 01, July 2022 | 1

Analysis of Duplicate Bug Report Detection Techniques
Afrina Khatun1, Sarker Foysal Mohammud Al Gabid2, Nazneen Akhter3,

Kazi Abu Taher4, Tajbia Karim5

Abstract

The reporting of large number of duplicate bug reports has generated the need

for appropriate duplicate bug report detection techniques. Researchers have

developed duplicate bug report detection techniques using different approaches

such as Information Retrieval, Machine Learning etc. However, due to rapid

development of duplicate detection techniques, it has become difficult to

compare and select an appropriate duplicate bug report detection technique.

Besides, the usage of different Information Retrieval and Machine Learning

techniques have made it more difficult to understand the successes, failures and

future opportunities of the proposed techniques. In order to draw a clear picture

of the existing techniques developed from the inception to the present, this paper

presents a systematic analysis of the duplicate bug report detection techniques.

The analysis has been prepared from existing techniques published in ranked

conference and journals. The paper has presented insights on the type of input

data set used for developing and testing the techniques, the feature selection and

pre-processing strategies of bug reports and the type of algorithms and

evaluation metrics used for developing the techniques. The paper lastly

elaborates the findings established during the discussion of the insights, and

presents a road map for future research on the uncovered areas.

Keywords: Duplicate Bug Report Detection, Feature Selection, Machine

Learning, Information Retrieval, Neural Network, Deep Learning.

1 Lecturer, Department of Information and Communication Technology, Bangladesh University

of Professionals (BUP), Email: afrina.khatun@bup.edu.bd
2 BICE Student, Department of Information and Communication Technology, Bangladesh

University of Professionals (BUP), Email: soykot070917@gmail.com
3 Lecturer, Department of Computer Science and Engineering, Bangladesh University of

Professionals (BUP), Email: nazneen.akhter@bup.edu.bd
4 Professor, Department of Information and Communication Technology, Bangladesh University

of Professionals (BUP), Email: kataher@bup.edu.bd
5 Assistant Professor, Department of Information and Communication Technology, Bangladesh

University of Professionals (BUP), Email: tajbia.karim@bup.edu.bd

mailto:afrina.khatun@bup.edu.bd
mailto:soykot070917@gmail.com
mailto:nazneen.akhter@bup.edu.bd
mailto:kataher@bup.edu.bd
mailto:tajbia.karim@bup.edu.bd

2 | Analysis of Duplicate Bug Report Detection Techniques

1. Introduction

Due to the changing nature of software systems, a bug in the source code of

software is common to all software systems. These bugs are submitted in report

formats for resolution. A reported bug report logically represents the information

of a source code bug. However, in open source systems, large number of

developers work from different locations in a single project. Therefore, it is very

common that a similar bug report can be submitted by a number of developers.

Besides, in open source systems, the users also have the privilege to report bugs.

As a result, same bug can be reported repetitively which creates duplicate bug

reports. For example 30% of Firefox’s reported bug reports are duplicate of already

reported bugs (Ebrahimi et al., 2019). Duplicate bug reports add cost to software

development and maintenance process in terms of time and effort (Rahman et al.,

2020). The identification and resolution of duplicate bugs consume the efforts of

bug triggers and software developers which can be spent on unique bug reports.

To reduce the cost, a number of techniques for identifying duplicate bug reports

have been proposed in literature. Anvik et al. (2005) first characterized the problem

of duplicate bug reports in open-source systems. The paper analyzed the bug

reports from two open-source projects such as Eclipse and Mozilla Firefox. The

analysis characterizes the bug reports from four different perspectives such as - the

type of bug reports, the rate of bug reporting, the duration of bug resolution and

the role of bug resolver.

In order to conduct the systematic analysis, the literature is searched in a step by

step approach. At first, a google scholar search has been conducted using the query

string “Duplicate Bug Report Detection”. However, the google search technique

returns all matching results that have the query string terms in any segment of the

searched articles. If the google scholar search is performed by setting the option

named “sort by relevance” as checked, then the false positive results occur at the

end of the returned search list. Therefore, the search is performed by setting the

option “sort by relevance” checked for each of the years from 2017 to 2021. For

each year, the top most 100 articles have been identified. Therefore, a total of 500

articles have been collected for processing in the next phase. During the second

phase, the articles which are non-English, database files, books or letter type

articles are excluded. Later, the title and abstract of the full text articles are checked

for relevancy with the searched query string. Out of the 500 identified articles from

year 2017 to 2021, total 74 articles are found to propose different techniques of

duplicate bug report identification. In the last phase, the ranking of the conferences

and journals where the 74 articles are published is checked using Computing

Research and Education (CORE) site (Education, 2021). Out of the 74 articles, 23

Journal of FST, Volume 01, Issue 01, July 2022 | 3

articles are published in ranked conferences and journals. Therefore, these total 23

articles are selected for the final systematic analysis.

For analyzing the existing techniques and identifying the future scope in duplicate

bug detection, this paper tends to answer three Research Questions (RQs).

• RQ1 demonstrates the input data types used for duplicate bug report

detection.

• RQ2 identifies the bug report properties which are used by existing

duplicate bug detection approaches.

• RQ3 discusses about the algorithms which are being used for duplicate

bug report detection.

The rest of the paper is organized into following sections. Section 2 shows the

general model of a duplicate bug report detection technique. Section 3 discusses

the existing duplicate detection techniques. Section 4 answers RQ1 by enlisting the

input data sets used for developing and assessing the existing techniques. The

selection and pre-processing strategies of bug report features is discussed in

Section 5. This section also answers RQ2 by identifying the most used bug report

features. Section 6 answers RQ3 by describing the machine learning, information

retrieval and deep learning approaches used for developing the existing

approaches. Finally, section 7 concludes the paper by summarizing the findings

and pointing the future research scopes in the field of duplicate bug detection.

2. General Model of Duplicate Bug Report Detection Techniques

The overall duplicate bug detection techniques consist of some common sequential

steps. Figure 1 represents the general model of duplicate bug report detection

technique which consists of Feature Selection, Bug Report Pre-processing and

Learning Algorithm or Model. The bug reporting systems such as Bugzilla, Jira

etc. enable the developers and users to report bugs using customer friendly

software interface. The tracking systems collect and maintain a variety of

information about the reported bugs as bug properties (Serrano & Ciordia, 2005).

These properties include - bug report id, assignee information, reporting date,

component details, product details, bug severity, bug tossing and management

history, bug status, bug severity, developer’s comments during bug resolution, bug

summary, bug description and many more. Some secondary properties such as bug

screen shots, bug stack trace, link to source code commit messages etc. are also

included sometimes. Each of the property represent different information regarding

the bug. The Feature Selection phase selects appropriate properties from the bug

report for learning the algorithm or model in the latter phases.

4 | Analysis of Duplicate Bug Report Detection Techniques

The properties of bug report are written in different formats such as natural

language, categorical format etc. Natural language text may contain redundant

information which do not represent the actual characteristics of the reported bug.

Therefore, the Pre-processing phase processes the content value of bug report

properties. Tokenization, stemming, stop word removal are some of the known text

pre-processing techniques used by existing techniques. Each property of the bug

report represent different information of the reported bug. Finally, in the Learning

Algorithm or Model a model is prepared using either machine learning, deep

learning or information retrieval based techniques. The features are fed into these

models identifying the duplicates. For machine or deep learning based approaches,

a bug report is generally classified as duplicate or not. On the other hand,

information retrieval based techniques return a ranked list of bug reports suggested

to be duplicates.

Setting

Parameter

Values

Input Bug

Reports

New Bug

Report

Final

Identification of

Duplicate Bugs

Figure 1: Components of General Duplicate Bug Report Detection Techniques

3. Literature Review

With the increasing number of duplicate reports in the bug repository, the need for

duplicate bug detection techniques becomes inevitable. In this essence, a number

of duplicate detection approaches have been devised. The existing techniques

differ from each other in using bug report properties, applying preprocessing

techniques, implementing algorithms and evaluating the results. Therefore, this

section describes the existing duplicate bug report detection techniques.

Learning

Algorithms

or Model

Feature

Selection

Pre-

processing of

Bug Reports

Journal of FST, Volume 01, Issue 01, July 2022 | 5

Jalbert and Weimer (2008) devised a duplicate bug report classification technique

that classifies the bug report as duplicate as the report arrives in the system. The

technique comprises of three steps which are surface (severity, OS version and

number of source patch or screenshot attachment) and textual (title and

description) feature extraction, text similarity measurement and graph clustering.

The similarity value of textual features are calculated using vector dot product. A

graph is then induced where the nodes represent bug reports and edges represent

their calculated similarity value. Next, the existing reports are clustered using

graph clustering algorithm. On arrival of a new report, the textual similarity is

checked and the report is classified in the clusters for duplicate identification. The

experiment includes a representation of a real-time bug reporting environment

using 29,000 bug reports from Mozilla project. The proposed approach achieved

around 52% recall rate in identifying duplicates, however the rate seems poor in

comparison with other existing techniques.

Johannes and Mira (2013) proposed an approach that applies stack traces to

machine learning algorithms for detecting bug report duplicates. However, the

technique may fail if source code attachments are missing in bug reports. Neysiani

and Babamir (2019a) also presented a duplicate detection approach which

combines both IR and ML based algorithms. The paper shows that when combined

the IR based technique shows similar performance as ML based techniques. Hence,

ML based models provide better performance in duplicate detection than the IR

based models alone.

Tian et al. (2016) developed a unified model for bug report assignee

recommendation by combining developer’s activity information and bug

localizing information. The proposed model extracts the title and summary text

from the bug reports, and the comments and identifiers from the source code files.

These extracted text then go through various text processing steps such as -

tokenization, stemming and stop word removal. The model also creates a list of

developer profiles which represent the list of bug reports and source code files

worked on by the corresponding developers. Next, to train the assignee

recommendation model sixteen (16) different features are proposed and extracted

using the processed texts of bug reports and source code files. Among the sixteen

features, the first five (5) features indicate the similarity between the new bug

report and the source code files added, edited or deleted by a developer. In order

to calculate the similarity value, cosine similarity and BM25 technique is applied.

The features six (6) to ten (10) extract the similarity between the new and the

6 | Analysis of Duplicate Bug Report Detection Techniques

previously fixed bug reports by a developer. Feature eleven (11) and twelve (12)

represents the frequency and recency of a developer’s bug resolution. Features 13

to 16 enables the model to incorporate the location information of bug reports and

developer commits. The similarity between the new bug report’s buggy code and

developer’s previously fixed source code is measured using the cosine similarity

and BM25 technique, for forming features thirteen (13) and fourteen (14). Lastly,

feature fifteen (15) and sixteen (16) checks if a developer has ever touched the

source code files corresponding to the new bug report. When a new bug report

arrives, the model recommends a ranked developer’s list by calculating a weighted

sum of k features selected from the 16 features (Lee & Lin, 2014). More features

can be added, as the work of Neysiani et al. (2020) shows that consideration of

product feature plays vital role. Besides, the k selected features for the three data

sets show that the features from activity information play better role than location

based ones.

Ebrahimi et al. (2019) devised a duplicate bug report detection technique which

leverages the stack traces of bug reports. The bug report properties such as product,

component and status is examined to identify the master bug report and its

corresponding duplicates. Then, the identified bug reports are used to create

Duplicate bug report Groups (DG) where each DG contains the stack trace of the

master bug and its corresponding duplicates. In this case the bug reports having

minimum four stack traces are taken into consideration. Next, the bug report of

each DG is used to train a Hidden Markov Model (HMM). The stack traces of bug

reports are treated as hidden state sequences and the DG groups are treated as

observations in the HMM training. Baum-Welch algorithm is used to estimate the

three parameters of HMM. For each DG group 60%, 10% and 20% bug reports are

used for training, validation and testing of the HMM model respectively. When a

new bug report arrives, the stack trace of the report is collected and matched with

each of the trained HMM to identify the probability of matching score. A highest

probability score represents the highest probability of being duplicate of the

existing DG groups. The technique will fail for bug reports which does not contain

any stack traces.

Neysiani and Babamir (2019b) presented a Longest Common Sequence (LCS)

based new feature for measuring similarity between two bug reports. From each

bug report identical, categorical, textual, and contextual features are elicited and

converted into a sequence of features. The textual and contextual features are

measured using BM25F and cosine similarity respectively. Next, the longest

common sequence is calculated between the bug reports for identifying duplicates.

Journal of FST, Volume 01, Issue 01, July 2022 | 7

The proposed technique achieves a high accuracy, precision and recall rate of

96.09%, 98.43% and 97.27% respectively. The paper added a new feature with the

existing ones, however, finding the appropriate feature for calculating similarity

between bug reports is still an unanswered research question.

Neysiani and Babamir (2019c) proposed the individual Manhattan distance

comparison method as an alternative to cosine space similarity for each subject in

contextual features (Neysiani & Babamir, 2019c). The study is an extension to

previous papers with using the different similarity metric. The proposed model was

trained by decision tree and linear regression classifiers and achieved accuracy

96.65% and 81% respectively and recall rate 95.89% and 73.18% respectively.

Wang et al. devised an duplicate detection approach which considers the natural

language info and source code execution info. The approach first calculates the

Natural Language based Similarities (NL-S) between the new and existing bug

reports. Next, the Execution information based Similarities (E-S) are measured

between the new and remaining bug reports. Finally, reports are selected using

comparisons based on two heuristics, where the first is to merge the E-S and the

NL-S into one joint comparison and the second is to try to identify whether the

natural language or the implementation info is the main issue in perceiving the

duplicate reports. The technique used TF-IDF similarity measure for checking

equality which tends to achieve poor accuracy in comparison with machine

learning approaches.

Poddar et al. (2019) proposed a neural architecture to identify duplicate reports by

considering the latent issues of the reports. The paper applied IR based topic

modeling for identifying the bug reports. However, the paper mentioned that bug

report written by general users and experienced developer differ from each other

in terms of technical word selection. Therefore, considering the bug reports

separately based on their submitter can also affect the performance of duplicate

detection. Soleimani and Morteza (2020) presented an approach to estimate the

impact of typo on Duplicate Bug Report Detection (DBRD). The evaluation of the

approach on the Android dataset shows that the typos improvement can increase

the accuracy and recall of DBRD at most 1% in average, which is trivial. The

proposed technique also used the textual, categorical, contextual and temporal

features. The results indicated that removal of typos cannot improve the

performance of existing techniques.

Jianjun et. al (2020) proposed a duplicate bug detection technique using Dual-

Channel Convolutional neural network. First, the technique extracts structured

8 | Analysis of Duplicate Bug Report Detection Techniques

(such as component, product, priority) and unstructured (such as summary,

description) information from the bug report and converts them into a text

document. Next, the text documents go through pre-processing steps which include

tokenization, stemming, stop word removal and case conversion. After pre-

processing, the words of the bug reports are converted into a corpus using

word2vec model. As a result, each word is represented using a single dimension

vector and each bug report is represented using a two dimension matrix containing

the vectors. The duplicate bug report pairs are then represented by combining the

single-channel bug report matrices into dual-channel bug report pairs. Next, the

training phase fed the dual-channel bug report matrices into the Convolutional

Neural Network (CNN) for training the model. The similarity score is compared

with a threshold value to classify the bug report pairs as duplicates. The proposed

technique considered only 300 words from each bug reports which may ignore

important information of the remaining part of the bug reports. Besides the

technique ignored the source code attachment or files while consideration of the

bug report properties.

Neysiani et al. (2020) proposed an efficient feature extraction model for duplicate

bug report detection. The technique starts with pre-processing the existing bug

reports by null value detection, homologize bug report formats, tokenization of

keywords etc. After pre-processing, the duplicate and non-duplicate bug reports

are listed and inputted into the feature extraction phase. For extracting efficient

features from bug reports, this phase considers four types of features which are

textual, temporal, categorical and contextual. The textual feature are extracted

using TFIDF, BM25F, Longest Common Sub-sequence (LCS) and aggregated

functions such as maximum, minimum and average values of conventional TF and

IDF values in uni-gram and bi-gram forms. The temporal features are extracted

using the interval between bug report ids and opening dates. The categorical

features are collected by comparing the similarity of product, component, priority,

type and version information of bug reports. Contextual features are elicited by

calculating the cosine similarity between contents of bug reports. Next, the

efficiency of each extracted feature is checked using a Efficiency Detector Value

(EDV). The EDV value is calculated using a new heuristic approach that takes the

weighted average of the normalized information gain ratio, Gini index, chi-square,

Principal Component Analysis and correlation of each feature. Using the extracted

features a duplicate bug report detector model is generated. Although the model

takes only 5 minutes to predict if a bug report is duplicate, the model compares

each new bug with every existing bug report which requires huge computation.

Journal of FST, Volume 01, Issue 01, July 2022 | 9

The paper also mentioned that the contextual features alone cannot predict the

duplicate bug report effectively.

Alkhazi et al. (2020) proposed an extended version of Tian et. al by adding four

more features which can be used in a ranking model. The proposed technique adds

four features for calculating the similarity between the new bug report and

previously committed messages by developers. The features are collected from bug

report commit messages and source code API documentation. Finally, total twenty

two (22) features were extracted to identify the appropriate feature combination

for training the bug report assignment model. Naive aggregation, Ordinal

regression and Learning-to-rank are used to combine the extracted features.

Sometimes only the experienced developers have permission to commit, but the

resolution may be done by other developers, therefore detail of all commit

messages need to be considered.

Jiang et al. (2020) developed a security bug report detection model known as

LTRWES, by combining learning to rank with word embedding. LTRWES detects

security related bug reports using four steps which are - Learning to Rank,

Selecting, Training and Predicting. The Learning to Rank phase starts with ranking

the NSBRs based on their similarity with the SBRs for correctly labeling all the

bug reports. In this regard, the summary and description fields of each bug report

is extracted and pre-processed. The pre-processing step includes text tokenization,

lowercasing letters, stop word removal and stemming. Next, the similarity score

between a pair of NSBR and SBR is calculated using BM25Fext technique. The

similarity score is represented using a matrix where the rows indicate NSBRs and

columns indicate SBRs. The average of the similarity scores in a row represents

the actual similarity score of a NSBR with respect to the other SBRs. The NSBRs

are then ranked based on their average similarity scores where the ranking shows

the lower similarity scored bug reports at the top. The selection phase identifies

the appropriate NSBRs by applying either of Multiple Selector (ms-selector) or

Roulette Wheel Selection (rs-selector) algorithm on the previously ranked NSBRs.

The ms-selector algorithm selects the top K lower scored bug reports from the

ranked NSBRs. On the other hand, re-selector algorithm also selects K bug reports

based on the probability of dissimilarity between the NSBRs and SBRs. The value

of K is specified by multiplying the ratio value with the number of SBRs. Next,

the top K selected NSBRs and all the SBRs are feed to the prediction model for

training. The training phase first creates a vector representation of each bug report

using the Continuous Bag of Words (CBOW) model. Naive Bayes, Multilayer

Perceptron, Random Forest, K- Nearest Neighbor (KNN), Logistic Regression,

10 | Analysis of Duplicate Bug Report Detection Techniques

and Support Vector Machine (SVM) techniques are used to train a model using the

bug report vectors. Finally, in the prediction phase, when a new bug report comes,

the bug report is also pre-processed and converted into a vector representation

using the CBOW model. The model takes the vector representation as input and

predicts the bug report as NSBR or SBR. The model is tested both on within project

and cross project. But while testing cross projects, only one project was taken as

cross project. For multiple cross projects how the technique performs can be

analyzed further.

Akilan et al. (2020) proposed a computational efficient double tier duplicate bug

detection system. The overall technique is divided into two phases – clustering and

classification. For each bug report, structured (component, product, priority) and

unstructured (summary, description) information’s are extracted. The clustering

phase prepossesses the bug reports and removes the redundant information. Next,

the bug reports are clustered using Latent Dirchilect Allocation (LDA) topic

modeling. When a new bug report comes, the Top N clusters which have similarity

with the bug report are extracted. The selection of Top N clusters reduces the

necessity of matching a bug report to all existing reports. As a result computational

efficiency is achieved. In the classification phase, the bug reports are represented

in vector formats using Word2Vec, GloVe and FastText. The similarity between

these vectors are calculated using cosine similarity and Euclidean similarity. The

proposed technique achieved 67% recall rate with 3 times less computation.

However, the recall rate of topic modeling based techniques seems lower than

exiting machine and deep learning techniques.

Kumar et al. (2020) developed a classification technique for identifying duplicate

bugs. The technique first extracts the categorical (product, component and version)

and textual (headline and description) features and preprocesses those. In feature

generation phase, three types of features have been calculated such as text

statistical, semantic and contextual feature. These features are fed to train the

machine learning classification which uses the XGBoost algorithm. When new bug

report arrives three servers known as App server, Model server and Embedding

server works together to get the new report as input and classify the report as

duplicate. The developed model was tested on Mozilla and Cisco project which

achieved 90%, 98%, 94% and 87% precision, recall, F1-score and accuracy

respectively. Although the paper used textual, categorical and customized

extracted features, it did not mention which feature have highest impact in

identifying appropriate duplicates.

Journal of FST, Volume 01, Issue 01, July 2022 | 11

Kukkar et al. (2020) proposed an automatic approach for detecting and classifying

duplicate reports based on deep learning. The proposed approach considered the

textual features such as title, summery and description and identical features such

as bug id. Deep learning-based model mainly CNN is applied for eliciting the

word’s semantic and morphological relationship for the textual similarity

assessment between bug reports. The proposed model achieved higher accuracy

rate in between 85% - 99% and recall rate is 79%-94%. The proposed technique

did not consider the contextual and temporal features which could impact the

performance of CNN feature extraction.

By combining the attention based and context based feature, a duplicate bug report

detection has been proposed by Rocha and Carvalho (2021). The overall technique

is divided into three phases – training, retrieval and classification. In training

phase, the bug report textual keywords are weighted for topic extraction and one

hot encoding is created for contextual features. Next, a quotient loss function is

devised for calculating the similarity between bug report embedding. The

technique has been applied on Eclipse, NetBeans and Mozilla database which

achieved accuracy of 84% accuracy. The application of the proposed loss function

on closed or industrial project can be another future research scope.

Mahfoodh and Hammad (2022) proposed a duplicate bug report detection

technique for predicting the risk factor of software components. The techniques

uses the title / summary and description of bug report and extracts the word tokens.

Next, the word tokens are converted into array which are fed into neural network.

The similarity is measured using two approaches. The first similarity approach

iterate on the words of one bug report to find its similar word with another bug

report using Euclidean distance. On the other hand, the second similarity measure

iterate on the words however within a given range. The technique achieved an

average precision of 99.89%. The proposed techniques considers a fixed given

range value for checking words. The increasing number of range value may affect

the computational performance of the technique.

Few existing papers have also presented survey of the above mentioned duplicate

bug report detection techniques (Neysiani et al., 2019a). Most of the papers only

analyzed the different algorithms and evaluation metrics used for developing the

duplicate detection techniques. However, none of the existing papers analyzed the

effects of datasets, pre-processing techniques and bug report features while

developing the detection techniques.

12 | Analysis of Duplicate Bug Report Detection Techniques

The difference in considering different datasets, pre-processing techniques, bug

report features, algorithms and evaluation metrics raises the issue of generality of

existing duplicate report detection approaches. Therefore, the detailed analysis

regarding selection of input datasets, pre-processing mechanisms, features,

algorithms and evaluation metrics may uncover the areas of improvement for

future research.

4. Input Data Set

Open source systems are developed with contribution of developers from various

location of the earth. Besides, now-a-days most of the software systems collect

feedback from users to provide continuous support and maintenance. As a result,

software bugs are reported by developers, testers and also users all over the world.

To track and maintain these huge load of information, the open source software

systems use bug tracking repositories such as – Jira, Bugzilla etc. Existing papers

have used bug data set from the open source bug tracking systems (Ebrahimi et al.,

2019; He et al., 2020; Neysiani et al., 2020; Tian et al., 2016). Some techniques

have also incorporated software source codes along with the bug reports for better

identification of duplicate bugs.

RQ1: What type of data are being used for duplicate bug report detection?

The most common data used for bug assignment, localization, classification and

duplicate identification is bug repository. A number of open source bug

repositories are available now-a-days. The bug repositories provide a number of

functionalities to easily search and view the bug reports. Besides, the bug tracking

systems have also provided different end-user and server-side utilities as third

party extensions for easy and public access to submitted bug reports. Therefore,

almost all of the existing techniques have used the open source bug tracking

systems to collect input data. Many open source software projects uses these bug

tracking systems for maintaining their bug repositories.

Figure 2 have listed the open source projects that have been used by existing

duplicate bug detection techniques. The figure depicts that open source systems

which maintain the bug repository consistently are used by most of the techniques.

For example Eclipse is used by most of the existing techniques as a data set. Eclipse

bug repository is maintained using Bugzilla. Bug reports can be searched and

extracted in different formats. For example - JDT, SWT, ANT, UI are some of the

products of Eclipse. Tian et al. (2016) and Alkhazi et al. (2022) have applied their

proposed techniques on Eclipse JDT, SWT and UI product specific bug reports for

evaluation.

Percentage (%) of Dataset Use

80
60.87

60

40

43.48

30.43 26.09

20

13.04 8.7

Eclipse Mozilla Open Android NetBeans GNOME

Office

Journal of FST, Volume 01, Issue 01, July 2022 | 13

Figure 2: The usage of bug dataset by existing techniques

Besides Eclipse dataset, the Mozilla, Open Office, Android, NetBeans and

GNOME are one of the most used dataset by most of the existing techniques

(Ebrahimi et al., 2019), (He et al., 2020), (Sabor et al., 2017). Bugzilla has provided

different plugins and websites for managing bug data of projects such as Bugzilla

GNOME, Bugzilla Mozilla etc. (Bugzilla, 2021). Yuan et al. has collected security

specific bug reports from Chromium, Derby, Camel, Wicket and Ambari dataset.

In order to download the reports an open source web crawler known as Scarpy has

been used (Zou et al., 2018). The tool is implemented in python for specifically

crawling security specific bug reports using multi-type feature analysis.

For learning a model substantial amount of fixed bug reports are required. Yuan et

al. collected minimum of 1000 bug reports from Ambari project for developing a

security bug detection model (Jiang et al., 2020). The reason of selecting a lower

number of bug reports is the availability of security bug reports. On the other

hands, most of the techniques have used more than 10,000 bug reports as data set.

Xiao et al. collected 2,73,710 bug reports from Eclipse bug repository for

developing a heterogeneous information network to detect duplicate bugs (Xiao et

al., 2020). The bug tracking systems enable the easy submission and maintenance

of large scale bug reports. Therefore, it is evident that most of the techniques have

been developed and tested on data set which are available in open source bug

tracking systems and which already have large scale bug data set.

For ensuring the effectiveness, a duplicate bug report detection technique needs to

be tested on both open source and closed source projects. The process of bug

detection, bug reporting, developer involvement for bug resolution etc. differs

between open source and closed source projects. Only a few techniques have

<bug>

<id>519169</id>

<creation_ts>2017-07-04 10:54:44 -0400</creation_ts>

<summary>Vulnerability found in Eclipse</summary>

<product>andmore</product>

<component>Core</component>

<version>0.5.0</version>

<status>ASSIGNED</status>

<priority>P1</priority>

<severity>critical</severity>

<long_desc><commentid>2849292</commentid>

<who name="Alon Boxiner">alonbo</who>

<thetext>Steps to reproduce: 1. Open a new Android

project.</thetext>

</long_desc>

</bug>

14 | Analysis of Duplicate Bug Report Detection Techniques

applied closed source projects for development and evaluation (Cooper et al.,

2021a, 2021b).

Bug reports in open source systems are reported using bug tracking systems. Each

bug tracking system provides a predefined form structure for reporting bug reports.

Bugs are reported using these forms and can be downloaded using plugins

provided by the bug tracking systems (Bugzilla, 2021). By using the plugins the

bug reports can be downloaded in XML, CSV and plain text format. Figure 3

shows the sample Eclipse bug report having id 519169 in XML format.

Figure 3: Sample eclipse bug report in XML format

Few approaches have used video-based bug reports as input (Cooper et al., 2021a,

2021b). These approaches leveraged screen-recording features of Android and iOS

device for capturing the video of bugs. The videos showing error are reported as

bugs for further resolution. The videos are converted into a consecutive series of

images. Next, the text of the images are extracted and matched with incoming bug

reports for duplicate detection.

The source code repository are collected from version control systems such as

GitHub, Bit bucket etc. Each version control system provides command line

functionalities to download the repository. Besides, the associated commit

messages can also be extracted using the terminal commands. The comments of

commit messages can be extracted in plain text, XML etc. formats. The change

history of source code files can also be extracted from commit details.

Journal of FST, Volume 01, Issue 01, July 2022 | 15

The above discussion answers the RQ1 by identifying that most of the existing

techniques generally use fixed bug reports as input data set. Besides, open source

systems which have maintained rich bug report repository (such as Eclipse,

Mozilla, NetBeans etc.) for long time are also preferred by most of the techniques.

Along with the bug reports, the source code, commit files, version history and

comments are also used as input data. Now-a-days the video and screenshot based

bug reports are also being used. Thus the study of video or screenshot based

duplicate bug detection can be explored by researchers. Although most of the

technique has used open source bug repository, only a few approaches have tested

the technique on closed source projects. Therefore, future research scope lies in

finding appropriate duplicate detection technique for closed source and cross

projects.

5. Feature Selection and Pre-processing

After collecting the input bug reports, appropriate bug report property or feature

needs to be selected for learning the duplicate detection technique. The more

appropriate the property is selected, the more relevant duplicate can be identified.

RQ2: Which bug report properties are used for duplicate bug report detection?

The bug report properties can be also referred as bug report features where each

feature indicates a new aspect of the reported bug. Based on the content type and

previous usage, the features are divided into four major categories which are -

Textual, Categorical, Contextual and Temporal.

5.1 Textual Feature

The textual feature refers to the bug report properties which are written in natural

language format. The title, summary, description and comments are the main

textual properties of a bug report as shown in Table 1. While reporting a bug, the

developers generally add a short title/summary of the bug report which is written

in natural language format. Besides the title, a detailed description of the bug is

also added. The description often contains source code stack traces. As a result,

the description of bug report may be of any length. After the reporting of the bug,

developers interact with each other by posting comments during the bug resolution.

Hence, the comment property also contains text in natural language format.

As the textual fields are written in natural language, so these fields indicate

appropriate developer’s or user’s perspective about a reported bug. Table 1 shows

that 20 out of the 23 papers have used description field of the bug report as feature

for duplicate bug detection. Next, the title or summary is the most used bug report

16 | Analysis of Duplicate Bug Report Detection Techniques

feature. The table also shows that out of the four major categories, textual features

are the most used bug report features.

Table 1: Features of Bug Report

Feature Type Feature Name No of Times Used

Textual Description 20

Title / Summary 18

Comment 3

Categorical Component 12

Product 11

Priority 10

Operating System 7

Version 5

Severity 4

Hardware 1

Status 1

Contextual Topic of report extracted based

on textual features

7

Temporal Open / Close Date 4

Identical Bug Id 5

Structural / Attachment Source code / file attachment 4

5.2 Categorical Feature

The categorical features represent the bug report properties which value is selected

from a list of predefined values. It includes the component, product, priority,

operating system, version, severity and status of the bug report. The similarity

between two duplicate reports are checked by calculating the equality of the

features. Table 1 shows that categorical features are the second highest used

features by the existing techniques. The Product and Component are the most used

features of categorical type.

5.3 Contextual Feature

Unlike the textual and categorical features, the contextual features tend to identify

inherent topic of the bug report using topic modeling techniques (Rocha &

Carvalho, 2021). These features are calculated by measuring the similarity

between the content of the bug report and a predefined list of words corresponding

to specific topics (such as security, performance, enhancement etc). The contextual

similarity of bug reports are measured using different techniques such as Cosine

similarity, Manhattan distance, LDA etc.

Journal of FST, Volume 01, Issue 01, July 2022 | 17

5.4 Temporal Feature

The temporal features tend to check the recency between the bug reports in terms

of reporting or closing time. These features are calculated by taking the subtraction

value of same fields from two different bug reports. The features are less used in

comparison of the other features as shown in Table 1. However this feature can be

helpful in filtering the recent bug reports. As a result, the search space of duplicate

report checking can be reduced.

Apart from the above mentioned features, Identical, Structural and Derived

features are also used in existing techniques (Mahfoodh & Hammad, 2022). The

identical features check the distance between the unique id of bug reports to

understand their reporting sequence. Source code patch or files are sometimes

attached with the bug report (Wang et al., 2008). These file attachments are

considered as structural features while duplicate detection. Derived features are

calculated by applying the TF-IDF, BM25F and date interval calculation

techniques on categorical and textual features of the bug report.

After extraction of features, ranking or combining features has also been done by

few proposed techniques (Alkhazi et al., 2020, Neysiani et al., 2020). For ranking

the features Naive aggregation, Ordinal regression and Learning-to-rank have been

used in literature. Few existing works have assigned specific value to features for

ranking. The values are assigned based on weighted average of information gain

ratio, Gini index, chi-square, PCA of the features. The more appropriate feature is

selected, the more appropriate duplicate reports can be identified. Therefore,

techniques for ranking and identifying effective features can be explored further.

Since the bug report fields are stored in different formats as discussed above,

therefore before checking similarity the data needs to be normalized in general

format. Figure 4 shows the popular pre-processing techniques which have been

used by researchers. It can be seen that text tokenization and stop word removal

have been used 78.26% times in the 23 studied papers. Stemming is the third most

used preprocessing technique being used in 43.48% cases. Jalbert et al. have

applied MontyLingua tool, ReqSmile tool and Porter Stemming algorithm for

tokenization, stop word removal and stemming respectively (Jalbert & Weimer,

2008). Lower case conversion, n gram word conversion, lemmatization are also

used while pre-processing the text fields of the bug report. For stack trace or source

code files, programming specific word removal, file path replacement mechanism

are applied (Kumar et al., 2020).

Percentage(%) of Pre-processing Technigues Use

Bag of Words (BoW)

Source code word handling

Lemmatization

n gram conversion

Case conversion

Stemming

Stop word removal

Tokenization

8.7

13.04

13.04

17.39

21.74

43.48

78.26

78.26

18 | Analysis of Duplicate Bug Report Detection Techniques

Figure 4: Sample eclipse bug report in XML format

Based on the above discussion, the answer to research question RQ2 depicts that

textual and categorical properties are the most used properties of a bug report. On

the other hand, stop word removal, tokenization and stemming are the popular text

cleansing techniques. However, there is no clear discussion on among the four

features, which are the most dominant one in identifying duplicates. Therefore, the

effect of using individual and combined features in identifying duplicate bug

reports can be studied in future.

6. Learning Algorithms

Once appropriate features are selected and pre-processed, the features are fed into

different algorithms to develop a model that can detect duplicate bug reports.

RQ3: What type of algorithms are being used for duplicate bug report detection?

The existing techniques have used Machine Learning (ML) (Neysiani & Babamir,

2019c), Information Retrival (IR) (Sabor et al., 2017) and Deep Learning (DL)

(Poddar et al., 2019) based techniques for identifying duplicate reports.

Information retrieval based techniques generate a ranked list of duplicates

corresponding to an incoming report (Sabor et al., 2017; Johannes & Mira, 2013)

.On the other hand, machine learning and deep learning based techniques classify

a incoming bug report as a duplicate (Akilan et al., 2020; Kukkar et al., 2020; He

et al., 2020). Some of the existing work have also combined these techniques in

different phases of the duplicate detection algorithm (Neysiani & Babamir, 2020).

For evaluation of the existing techniques, researchers have used different metrics

such as Accuracy, Recall, Precision, F1- score etc. Among these, accuracy and

Figure 6: Analysis of accuracy in different Deep Learning (DL) algorithms

Accuracy vs Machine Learning Algorithms

100

97

94

91

88

85

82

79

76

73

70
XGBoost LR DT KNN rankSVM

Accuracy 87 92.23 97.61 97.5 98

Journal of FST, Volume 01, Issue 01, July 2022 | 19

recall has been used by most of the techniques (Neysiani et al., 2020; He et al.,

2020; Xiao et al., 2020; Neysiani & Babamir, 2020, 2019b). Accuracy refers how

many correct classification have been predicted by the model as shown in Equation

1. On the other hand, recall refers how many correct duplicates have been placed

in the ranking from the actual duplicates as shown in Equation 2.

= (1)

= (2)

Figure 5: Analysis of accuracy in different Machine Learning (ML) algorithms

Accuracy vs Deep Learning Algorithms

100
97
94
91
88
85
82
79
76
73
70

NN

(BERT+LDA)

Dual Channel

CNN
MLP+RNN CNN

Accuracy 87 96.85 98.83 99.38

20 | Analysis of Duplicate Bug Report Detection Techniques

Figure 5 and 6 shows the accuracy of duplicate bug detection technique using

different Machine Leaning and Deep Leaning algorithms respectively. The reason

behind selecting these algorithms is the 23 reviewed papers have used these

algorithms in combination or individual. Among the different ML algorithms the

accuracy of Decision Tree (DT), KNN and rankSVM is above 97% which is

prominent. On the other hand, the deep learning algorithms such as Recurrent

Neural Network (RNN) and Convolutional Neural Network have accuracy above

98% which shows DL algorithms have better accuracy than ML algorithms.

However, both of the algorithms have reached above 96% accuracy while

detecting duplicate bug reports which indicate that there is small scope of future

improvement in terms of accuracy. However, while achieving the accuracy the

performance in terms of time, computation can be considered as future research

scope. Besides the results of Figure 5 and 6 have been achieved using open source

bug repositories where huge volume of data is available. The accuracy of these

algorithms in terms of closed source bug repositories need further attention.

Table 2: Analysis of Recall in Information Retrieval, Machine Learning and

Deep Learning Techniques

Information Retrieval Techniques

LDA TF-IDF BM25F LCS

67 84 93.04 97.27

Machine Learning Techniques

LR KNN XGBoost DT

92.95 97.51 98 99.94

Deep Learning Techniques

NN CNN Dual Channel CNN RNN

80 91.48 96.7 97.07

Table 2 shows the recall value of different Information Retrieval, Machine

Learning and Deep Learning algorithms. Among the three category, IR based

algorithms have lowest recall of 67% and 84% using Latent Dirichlet Allocation

(LDA) and TF-IDF technique respectively. Jalber et al. also mentioned in the paper

that TF-IDF achieved recall rate of 52% which is poor (Jalbert & Weimer, 2008).

On the other hand, Machine Learning and Deep Learning techniques have higher

recall in terms of IR based techniques. Decision Tree has accuracy of 99.94% in

detecting duplicate bug reports (Soleimani & Morteza, 2020). The high value of

recall for ML and DL techniques represent the limited scope of improvement in

this metric. The future scope lies in evaluating the performance of these algorithms

in terms of time, computation, memory usage etc. to reach this recall value.

Journal of FST, Volume 01, Issue 01, July 2022 | 21

The above discussion answers the research question RQ3 by identifying the fact

that ML and DL algorithms achieve higher accuracy and recall than the IR based

techniques. The higher value of these metrics show little scope of improvement in

these metrics. However, in future the performance of combined application of

these algorithm can be analyzed. Another future scope for research can be the

implementation of duplicate detection technique as plugin for the software

development IDEs. As a result, before reporting a bug, the developers can check

for its duplicate bugs.

7. Conclusion

With the increasing of duplicate bug report submission, the need for appropriate

duplicate bug report detection has become important. A general duplicate detection

technique consists of three steps - Feature Selection, Bug Report Pre-processing

and Learning Algorithm or Model. Based on this, a number of duplicate detection

techniques have already been proposed by researchers. Therefore, this paper

discusses the present literature work of duplicate bug report detection. In order to

do so the papers devises three research questions which tend to analyze the input

data set, the feature selection and prepossessing, and the evaluation of different

learning algorithms respectively. With each research question, the future road map

for research in duplicate detection has also been enlisted.

References

Akilan, T., Shah, D., Patel, N., & Mehta, R. (2020). Fast detection of duplicate bug

reports using lda-based topic modeling and classification. In proceedings

of the ieee international conference on systems, man, and cybernetics

(smc) (pp. 1622–1629).

Alkhazi, B., DiStasi, A., Aljedaani, W., Alrubaye, H., Ye, X., & Mkaouer, M. W.

(2020). Learning to rank developers for bug report assignment. Applied

Soft Computing, 95 (pp. 106667).

Anvik, J., Hiew, L., & Murphy, G. C. (2005). Coping with an open bug repository.

In proceedings of the oopsla workshop on eclipse technology exchange

(pp. 35–39).

Bugzilla. (2021). Bugzilla addons. Retrieved from

https://wiki.mozilla.org/Bugzilla:Addons (Last accessed 23 October

2021)

22 | Analysis of Duplicate Bug Report Detection Techniques

Cooper, N., Bernal-Cardenas, C., Chaparro, O., Moran, K., ´ & Poshyvanyk, D.

(2021a). It takes two to tango: Combining visual and textual information

for detecting duplicate video-based bug reports. In proceedings of the

ieee/acm 43rd international conference on software engineering (icse) (pp.

957–969).

Cooper, N., Bernal-Cardenas, C., Chaparro, O., Moran, K., & ´ Poshyvanyk, D.

(2021b). A replication package for it takes two to tango: Combining visual

and textual information for detecting duplicate video-based bug reports. In

proceedings of the ieee/acm 43rd international conference on software

engineering: Companion proceedings (icse-companion) (pp. 160–161).

Ebrahimi, N., Trabelsi, A., Islam, M. S., Hamou-Lhadj, A., & Khanmohammadi,

K. (2019). An hmm-based approach for automatic detection and

classification of duplicate bug reports. Information and Software

Technology, 113, (pp. 98–109).

Education, C.R.(2021).Core website. Retrieved from

http://portal.core.edu.au/conf-ranks/ (Last accessed 19 November 2021)

He, J., Xu, L., Yan, M., Xia, X., & Lei, Y. (2020). Duplicate bug report detection

using dual-channel convolutional neural networks. In proceedings of the

28th international conference on program comprehension (icpc) (pp. 117–

127).

Jalbert, N., & Weimer, W. (2008). Automated duplicate detection for bug tracking

systems. In proceedings of the ieee international conference on dependable

systems and networks with ftcs and dcc (dsn) (pp. 52–61).

Jiang, Y., Lu, P., Su, X., & Wang, T. (2020). Ltrwes: A new framework for security

bug report detection. Information and Software Technology, 124, (pp.

106314). Johannes, L., & Mira, M. (2013). Finding duplicates of your yet

unwritten bug report. In proceedings of the 17th european conference on

software maintenance and reengineering (pp. 69–78).

Kukkar, A., Mohana, R., Kumar, Y., Nayyar, A., Bilal, M., & Kwak, K.-S. (2020).

Duplicate bug report detection and classification system based on deep

learning technique. IEEE Access, 8, (pp. 200749–200763).

Kumar, A., Madanu, M., Prakash, H., Jonnavithula, L., & Aravilli, S. R. (2020).

Advaita: Bug duplicity detection system. arXiv preprint arXiv:2001. (pp.

10376).

http://portal.core.edu.au/conf-ranks/

Journal of FST, Volume 01, Issue 01, July 2022 | 23

Lee, C.-P., & Lin, C.-J. (2014). Large-scale linear ranksvm. Neural computation,

26(4), (pp. 781–817).

Mahfoodh, H., & Hammad, M. (2022). Identifying duplicate bug records using

word2vec prediction with software risk analysis. International Journal of

Computing and Digital Systems, 11(1), (pp. 763–773).

Neysiani, B. S., & Babamir, S. M. (2019a). Duplicate detection models for bug

reports of software triage systems: A survey. Current Trends In Computer

Sciences & Applications, 1(5), (pp. 128–134).

Neysiani, B. S., & Babamir, S. M. (2019b). Improving performance of automatic

duplicate bug reports detection using longest common sequence:

Introducing new textual features for textual similarity detection. In

proceedings of the 5th international conference on knowledge based

engineering and innovation (kbei) (pp. 378–383).

Neysiani, B. S., & Babamir, S. M. (2019c). New methodology for contextual

features usage in duplicate bug reports detection: dimension expansion

based on manhattan distance similarity of topics. In proceedings of the 5th

international conference on web research (icwr) (pp. 178–183).

Neysiani, B. S., & Babamir, S. M. (2020). Automatic duplicate bug report

detection using information retrieval-based versus machine learning-based

approaches. In proceedings of the 6th international conference on web

research (icwr) (pp. 288–293).

Neysiani, B. S., Babamir, S. M., & Aritsugi, M. (2020). Efficient feature extraction

model for validation performance improvement of duplicate bug report

detection in software bug triage systems. Information and Software

Technology, 126, (pp. 106344).

Poddar, L., Neves, L., Brendel, W., Marujo, L., Tulyakov, S., & Karuturi, P.

(2019). Train one get one free: Partially supervised neural network for bug

report duplicate detection and clustering. arXiv preprint arXiv:1903. (pp.

12431).

Rahman, M. M., Khomh, F., & Castelluccio, M. (2020). Why are some bugs non-

reproducible?:–an empirical investigation using data fusion–. In

proceedings of the 36th international conference on software maintenance

and evolution (icsme) (pp. 605–616).

24 | Analysis of Duplicate Bug Report Detection Techniques

Rocha, T. M., & Carvalho, A. L. D. C. (2021). Siameseqat: A semantic context-

based duplicate bug report detection using replicated cluster information.

IEEE Access, 9, (pp. 44610–44630).

Sabor, K. K., Hamou-Lhadj, A., & Larsson, A. (2017). Durfex: a feature extraction

technique for efficient detection of duplicate bug reports. In proceedings

of the ieee international conference on software quality, reliability and

security (qrs) (pp. 240–250).

Serrano, N., & Ciordia, I. (2005). Bugzilla, itracker, and other bug trackers. IEEE

software, 22(2), (pp. 11–13).

Soleimani, N. B., & Morteza, B. S. (2020). Effect of typos correction on the

validation performance of duplicate bug reports detection. In proceedings

of the 10th international conference on information and knowledge

technology (ikt), tehran, iran (pp. 1–2).

Tian, Y., Wijedasa, D., Lo, D., & Le Goues, C. (2016). Learning to rank for bug

report assignee recommendation. In proceedings of the 24th international

conference on program comprehension (icpc) (pp. 1–10).

Wang, X., Zhang, L., Xie, T., Anvik, J., & Sun, J. (2008). An approach to detecting

duplicate bug reports using natural language and execution information.

In proceedings of the 30th international conference on software

engineering (pp. 461–470).

Xiao, G., Du, X., Sui, Y., & Yue, T. (2020). Hindbr: Heterogeneous information

network based duplicate bug report prediction. In proceedings of the ieee

31st international symposium on software reliability engineering (issre)

(pp. 195-206).

Zou, D., Deng, Z., Li, Z., & Jin, H. (2018). Automatically identifying security bug

reports via multitype features analysis. In proceedings of the Australasian

conference on information security and privacy (pp. 619–633)

s (BUP)

Mirpur Cantonment, Dhaka-1216

Telephone : 88-02-8000368, Fax : 88-02-8000443

E-mail: journal.fst@bup.edu.bd

mailto:journal.fst@bup.edu.bd

